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Measurements have been made of the wavelength of Taylor vortices between 
rotating cylinders. It is shown that the relaxation time of such a vortex system 
is approximately L2/6v, where L is the length of the vortex column and v is the 
kinematic viscosity. Previous measurements reported in the literature have not 
been steady-state measurements because of the long relaxation time. The present 
data are accurate to 1 yo and extend to 40 times the critical Taylor number. The 
variation of wavelength with Taylor number is linear and the slope is exceedingly 
small and negative. The non-uniqueness of wave-number observed by Coles 
(1965) in doubly periodic flows is here shown to occur in the rotationally sym- 
metric case. It is argued that variational methods are inapplicable in determining 
the wave-number of finite-amplitude secondary flows. The experimental results 
show that the wave-number is determined uniquely by the initial conditions of 
the system. It is suggested that any method which neglects the time-dependent 
behaviour of the system cannot select the final state from the manifold of solu- 
tions which occur in non-linear problems. 

1. Introduction 
The manner in which wave-numbers are determined in non-linear stability 

theory has never been resolved satisfactorily. Consider, for example, the in- 
stability which occurs in the annular space between coaxial rotating cylinders. 
Taylor (1923) first showed that, when the angular velocity of the inner cylinder 
Ql exceeds to a sufficient extent that of the outer Q2, a secondary flow sets in. At 
the critical Taylor number T,  the velocity field changes from one that is two- 
dimensional to one that is three-dimensional. This flow is composed of two parts: 
a mean velocity in the azimuthal direction 8, which depends only on the radial 
co-ordinate r ;  and an additional flow called the disturbance. The latter is periodic 
in the axial direction z and is either independent of 8 or the dependence on 8 is 
periodic. For the steady-state azimuthal velocity component we can write 

m m  

2, = C 2 v,,,,(r, t )  + {vcaq(r, t )  cos nax + W ~ , , ~ ( Y ,  t )  sin naz} exp i(qm8), (1.1) 

where q, n, and m are integers. Here, m may equal zero, in which case we may set 
vsnq = q = 0 without loss of generality. Velocity fields of this sort are steady for a 
considerable range of the Taylor number above the critical value; the cxtent of 

q=--mn=l  
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this region depends strongly on the ratio of the radii of the cylinders, y = R,/R,, 
where R, > R,. 

When the complete non-linear equations are made dimensionless, it is found 
that Couette flow is specified by three dimensionless parameters-at least when 
the cylinders are infinitely long. (End effects and length effects will be treated 
later.) The choice of parameters is somewhat arbitrary and we will choose €or the 
purpose of this discussion either R,, = Q,R:/v, Rout = Q,R;/v and y or Bin, 
,LL = Q,/Q, and 7, where v is the kinematic viscosity. If 7 and Rout are held fixed, 
we should expect, upon referring to (l.l),  that, for the simple case m = 0, u,,,, ucn0, 
and a are functions of R1,. 

For a fixed wave-number a, model equations have been devised to calculate 
uolL0 vs. R,, and ucno vus. R,, when the Taylor number T is close above T,. The 
experimental results are in good agreement with theory (cf. Davey 1962 and 
Snyder & Lambert 1966). The wave-number of the disturbance a is relatively 
easy to observe and any complete theoretical treatment of the problem should 
predict a. Yet there are several different theories of wave-number selection, and 
their results are not in agreement among each other or with previous experiments. 

Some of the theoretical work is based on a steady-state approach which we shall 
show below to be inappropriate. The initial value approach to the problem, as it 
has been worked out to date (cf. Stuart 1960, p. 63-97; Ekhaus 1965) is based on 
models, asymptotic expansions and ad hoc assumptions and cannot, therefore, 
be considered to be universally valid. Its success in predicting vOn0 and vcn0 us. R,, 
at fixed a is very encouraging. But the methods developed so far are limited to 
dealing with one dominant mode. It is known that when calculating wave- 
number selection it is necessary to consider a band of possible wave-numbers. 

Considering these difficulties it is appropriate, then, to use an empirical 
approach, such as we report here, to settle the matter in favour of one of the 
theories or to reject them all. The present work is an experimental investigation 
of the wavelengths of Taylor vortices in the finite-amplitude region of the sta- 
bility diagram. The question we ask is: how is the wave-number observed in 
a given experiment determined? 

2. Theories of wave-number selection 
2.1. Be'nurd convection and rotating Couette %ow 

There are several theories which apply to the problem in hand; but, in every case 
in which they have been applied to a specific example, it has been the Bbnard 
problem that has been studied. Fortunately, this is no great handicap for us since 
these theories are quite general in their formulation. The methods and also most 
of the results carry over to the rotating Couette problem. We must, however, 
describe the arrangement of BBnard convection, cite the relevant results, and 
then make the analogy with the double cylinder results. It appears that, if we 
can answer the question posed above for Couette flow, there will be no difficulty 
(at least in principle) in applying the result to all types of cellular instability. 
This is our justification for studying the Taylor problem while the theories have 
treated the experimentally more involved BBnard problem. 
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In  BBnard convection the fluid is contained in a thin layer in the horizontal 
and extends to infinity. There is an applied vertical thermal gradient set up by 
heating the bottom surface and cooling the top. Only two dimensionless para- 
meters are needed to specify the state-the Prandtl number and the Rayleigh 
number. (The Rayleigh number Ru is a dimensionless measure of the thermal 
gradient.) A t  small Ra there is no motion, but beyond a critical value a cellular 
motion appears and the flow is periodic in the two horizontal co-ordinates. It 
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FIGURE 1.  A typical Taylor number vs. wave-number curve at onset. 

would seem that it is necessary to determine two wave-numbers. However, con- 
siderations of symmetry show that the plan-form must consist of simple geo- 
metric shapes: squares, rectangles, or hexagons. An alternative arrangement is 
that of rolls-a wave-form with periodicity in only one direction. 

BBnard convection can be described by functions similar to the wnnO and vcno of 
(1.1) which apply to the rotating cylinder problem. A specification of the system 
requires a knowledge of won0, wCnn, a and the plan-form as a ftinction of Ru. 

2.2.  Linearized regults 
The results of the linearized theory are considered first. Taylor followed up 
his experimental work with an analysis in which he showed how the onset of 
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instability can be predicted by linearizing the governing equations in terms of the 
disturbance field. The mathematics reduces to an eigenvalue problem with the 
Taylor iiumbcr R:* as eigenvalue. For 7 and ,u fixed there is an eigenvalue for 
each value of u. A typical curve of R:n vs. a is shown in figure 1. For increasing 
values of R,, the flow first becomes unstable at a, and this is the wave-number 
observed at onset. 

BBnard convection is similar in most respects to Taylor’s problem with one 
exception. The Ra vs. a curve looks like figure 1 and has the same interpretation. 
However, there are several plan-forms which are possible solutions of the govern- 
ing equations and each has the same Ra us. a curve. Linear theory fails to select 
a plan-form. In this respect Couette flow is simpler since it is fully specified at 
onset, except for the amplitude factor, by the linear theory. 

At values of R,, or Ra greater than critical it is evident from figure 1 that there 
is a band of allowed wave-numbers, yet a single wave-number mode is observed. 
But linear theory holds only at  onset and we must turn to a non-linear analysis 
for reliable predictions. The applicability of the linear theory close to the sta- 
bility line is well substantiated. The theory and results have been reviewed in 
detail by Chandrasekhar (1961). Non-linear theories are not as well tested. The 
theoretical results derived by different methods concur on some points such as the 
amplitude and plan-form of the wave-form, but there has not been general 
agreement on even the method of calculating the wave-numbers. 

2.3. Variational methods for the non-linear problem 
Malkus & Veronis (1958) were the first to produce a theory of non-linear secondary 
flow with any degree of unity and completeness. Their method is a regular per- 
turbation on the velocity and temperature fields and on Ra,  The steady state is 
considered, so that all time derivatives are set equal to zero. They find that: 
(a )  the plan-forms listed above are all allowed and there is no niethod of selecting 
a preferred shape using the governing equations; (b)  the wave-number is also 
indeterminate. The authors suggest a criterion for selection based on an ex- 
tremum principle: minimize the total heat transport (criterion I) or the mean 
square vertical thermal gradient (criterion 11). 

A new approach to hydrodynamic stability has been proposed recently by 
Glansdorff & Prigogine (1964). Using the methods of lion-equilibrium statistical 
mechanics, they introduced a function of the defining variables together with 
their time derivatives which upon functional variation leads to equations for the 
pertinent fields. If the fields are expanded in a series, thelowest-order equations are 
identical with the linearized instability equations. The interest here is, of course, 
in the higher-order terms. The application of the Prigogine-Glansdorff method to 
BBnard convection has been carried out by Roberts (1966). In some recent work 
Roberts (private communication) has concluded that this method predicts a 
band of possible wave-numbers as Schluter, Lortz & Busse (1966) have found in 
an earlier paper. No unique value of a results from this approach. 

It is interesting to note that the function that is varied in the Prigogine- 
GlansdorE method represents a generalized measure of entropy. The extremum 
sought is in the rate of entropy production (criterion 111). In addition to 
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the extremum principles enumerated above, we might add Stommel’s (1947) 
suggestion that maximum viscous dissipation is selective, and Coles’s (1965) 
conjecture that the preferred state is the path of steepest ascent on a surface 
of dissipation rate plotted against Ri, and a. A common characteristic of the 
variational principles is that they are not derived directly from the governing 
equations and it is not known whether this is possible for any one of them. 

2.4. Methods derived from the governing equations 
The only other selection principle which we find proposed in the literature is 
derived from some work of Stuart (1960) and of Ekhaus (1965). Stuart has de- 
veloped a perturbation scheme which differs from previous work in that the 
time variable is included. The initial disturbance is assumed to have the spatial 
wave-form predicted by linear stability theory and to depend upon time through 
an amplitude factor. Non-linear terms in the governing equations cause harmonic 
generation and contribute a correction to the mean motion. A consistent ex- 
pansion is found for the mean motion, for the fundamental and the generated 
harmonics, and for the time-dependent amplitude. Each is a power series in the 
amplitude function. Thus it is possible to see how a solution to the linearized 
stability problem grows with time. The steady-state solution is the limit of the 
time-dependent wave-forms as t + co. It has been proved that Stuart’s steady- 
state solution with fixed a gives the same amplitude parameter as the Malkus- 
Veronis expansion when the same plan-form and wave-number are used. The 
notable feature of Stuart’s method, which is of interest here, has been pointed 
out by Segel(1962), who suggested that the final equilibrium state must depend 
upon the initial state. 

Ekhaus (1965) has also treated the non-linear stability problem using a time- 
dependent wave-form. The expansion differs from that of Stuart in that the 
spatial part of the wave-form is expressed in a series of the complete set of eigen- 
functions occuring in the linear problem. Each of these eigenfunctions is multi- 
plied by a time-dependent amplitude which can be determined by solving a set 
of non-linear ordinary equations of first-order. DiPrima ( 1967) has generalized 
Ekhaus’s method so as to apply to the present problem. He also compares the 
formalism of Stuart and Ekhaus. 

Another theoretical paper of importance for the present topic is by Schluter 
et at. ( 1965). These authors have used a regular perturbation expansion about the 
critical point to generate a non-linear solution. This solution contains a as a 
parameter. The non-linear solution is then perturbed and its stability is sought. 
It is found that only a narrow band of wave-numbers is stable. The stable band is 
made up entirely of those wave-numbers predicted by the linear theory but 
includes only a small fraction of the total. The width of the non-linear band is 
of order (Ra - Racrit). The reader is referred to figure 1 of the cited paper for 
more detail. Three points are significant: (a)  Schluter et a,l. use a method essen- 
tially independent of the time variable in obtaining their non-linear solution; 
(b )  they do not find a precise value of a at each value of Ra but instead a band of 
allowed values which increases with Ra; (c )  the results are derived only from the 
equations of motion-no additional assumptions are required. The result of 
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Schluter et al. of a band of wave-numbers narrower than the linearized limits 
is a signifimnt achievement especially since it is derived directly from the 
governing equations. 

DiPrima & Kogelman (private communication) have shown that the method 
of Ekhaus leads to a ‘narrower ’ band for the Taylor problem. A third example of 
the ‘narrower’ band result is that of Roberts cited above. His analysis is based 
on a variational principle. Thus there is general agreement between the results 
of several different methods concerning the narrower band. It is the thesis of this 
paper that the selection of a particular wave-number from the allowed band is 
determined by the initial conditions as Segel(l962) first proposed. 

I have not mentioned numerous papers concerned with finding a preferred 
plan-form. The Schluter et al. paper leads to an unambiguous choice as does the 
method of Stuart. Of course, the several variational techniques also pick out a 
plan-form. But the double degeneracy at onset is peculiar to thermal convec- 
tion and is not shared by the Couette flow problem. Therefore it is not of great 
concern for our present purposes. Ageneral review of non-linear problems and the 
available results has been made by Stuart (1960) and by Segel (1966). 

3. Previous experimental and numerical results 
3.1. Experiments on wavelengths 

Although a great deal of experimental work has been reported on both Couette 
flow and BBnard convection, we can find only four papers which record wave- 
length measurements in the finite-amplitude region. The other work on non- 
linear aspects of instability are concerned mainly with torque and heat flux. For 
the thermal convection problem Deardorff & Willis (1965) have used a convection 
chamber with movable walls designed so that the width to height ratio may be 
varied. They studied the wavelength as a function of width at  Rayleigh numbers 
approximately lo2, lo3 and lo4 times the critical value. These values of Ra are 
quite beyond the range where we may at present hope to compare the data with the 
theories described above. Our measurements on Taylor cells show that, when there 
are fewer than 10 cells between ends, the end effects distort the cells consider- 
ably compared with the wave-form in an infinite column of fluid. The number 
of cells found in the work of Deardorff & Willis is for the most part less than 10. 

Coles (1965) has carried out a rather extensive investigation of the non- 
uniqueness of supercritical flow and the various transitions between wave- 
forms. Using an apparatus with 11 = 0-877 and a length to gap ratio of 28, he 
mapped out the variables N and m as a function of R,, at p = 0. Here LV is the 
number of vortices in the annulus. It may seem obvious that Coles’ data may be 
reduced to a plot of a and m vs. R,, by dividing the length of the fluid column 
L by N .  This, however, is not the case. We have shown in another investigation 
that the two vortices adjacent to the ends of the apparatus have a wave-form 
substantially different from that of Taylor vortices. The length of the end cell is a 
strong function of R,, and 7. It is possible with a field of 22 vortices (2 end cells 
+20 Taylor cells) to find the wavelength of the Taylor cells has been com- 
pressed by 10 yo as R,, doubles owing to the expansion of the end cells. A 10 yo 
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increase in a is equivalent to a change to 24 cells in the incorrect method of 
calculating the wavelength. Thus, without a separate measurement of the height 
of the end cells, the values of a derived from Coles’ data are imprecise. 

An important investigation of non-linear stability by Donnelly & Schwartz 
(1965) includes, among other measurements, the a 0s. Rf,, curves for 7 = 0.95, 
0.90 and 0.85 with p = 0. Their results were obtained by slowly increasing R,, 
above critical. The region plotted out extends throughout the region where 
m = 0. The results are somewhat difficult to interpret. We find that, within the 
scatter of the data, the dependence is linear and d a p T  = + 7 x 
and - 0.2 x loe4 at 7 = 0.95,0.90 and 0.85 respectively. We shall show later that 
the method they used to find the wavelength is probably not suited for precise 
measurements. Some previous measurements of n by Snyder & Lambert (1966) 
suffer from this same difficulty. In summary it appears that there are no finite- 
amplitude measurements of a that are in the region where extant theories apply 
and that are known to a high degree of accuracy. 

- 5 x 

3.2. Experiments on uniqueness 
It is quite well documented that the dimensionless parameters which occur in the 
steady-state governing equations do not determine the wave-form. For example, 
Pai (1943) was the first to note that in the Taylor double cylinder experiment, 
for ,u = 0 and fixed R,,, the wave-form is indeterminate. He showed that, de- 
pending upon the past history, the flow in his apparatus consisted of either 4 or 
6 Taylor vortices for fixed Rin. This behaviour was evident over a wide range of 
Ri,. Using hot-wire anemometry Pai measured the velocity field and showed 
that it differed in the two possible cases. Pai worked at very large R,, where 
turbulent effects complicated the problem. Pai’s work is primarily qualitative. 

Later Hagerty (1946) observed that, if the length of the fluid column L is 
changed while the Couette apparatus is operating in the supercritical range, the 
wavelength can be increased or decreased by a factor of nearly two. For both 
Hagerty’s apparatus and that of Pai, the aspect ratio was so small that our 
previous measurements indicate that end effects dominate the results. 

Recently Coles (1  965) studied the non-uniqueness of circular Couette flow. 
This time the indeterminateness is shown to oceur sufficiently close to the 
stability curve so that turbulent effects do not appear. His apparahs is long 
enough so that end effects do not modify the results noticeably. Using an 
apparatus with 7 = 0.88 and for p = 0 he gives a very complete description of the 
mode transitions and accessible wave-numbers over a large range of R,, for one 
value of L. At values of 7 close to one, the m > 0 modes appear close above the 
critical value of Rin; there is only a small region of parameter space with two- 
dimensional flow (m = 0). All the transitions studied by Coles are between modes 
with m > 0 : the flow is doubly periodic. Coles’ important contribution is a table 
of all possible ( N ,  m) and their transition values for fixed R,, over a large range 
of Rin. 

Experimentalists working with BBnard convection have also noted non- 
uniqueness in the wave-number but more frequently in the plan-form. Here 
the papers of Koschmieder (1966) and Rossby (1966) are relevant. Koschmieder 
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is concerned chiefly with the boundary conditions and shows that end effects 
can determine the plan-form. This is not the type of indeterminateness con- 
sidered in this paper. But it is important to know that there is another source of 
non-uniqueness. Rossby notes non-uniqueness of the wave-number in very 
carefully controlled experiments. 

The question whether non-uniqueness is a property of non-linear secondary 
flows or may arise from end effects has been raised by several workers (e.g. Segel 
1966). The author undertook to test this hypothesis by repeating experiments 
such as Coles (1965) describes, at  several different values of L (Snyder 1968a). It 
is found that Coles’s table of mode transitions is a function of L, but it is a periodic 
function. For example, if for L there is a transition from 24 to 28 cells at a cer- 
tain Xi,,, then for a column BL there is a transition from 12 to 14 cells at  the same 
speed. This periodicity or similarity breaks down when N z 10; then end effects are 
important. Since Coles’s L permitted 18 to 32 cells we believe that the indetermin- 
ateness exhibited by him is related to the solutions of the governing equations 
and not to his apparatus. The dimensions of our cylinders differ quite a bit from 
Coles’ and the results are similar. 

3.3. Numerical results 
Several numerical experiments have been reported in which the full non-linear 
equations are integrated as an initial value problem. The work has been re- 
stricted for the most part to two spatial dimensions so that in the Couette case 
we can set m = 0 and in the convection case only rolls are allowed. For computa- 
tions of this sort, it is not possible to use the plan-wise boundary conditions that 
prevail in the laboratory. One has to pick an interval for the computing grid and 
specify the boundary conditions at the edges. Only two choices for these con- 
ditions seem to be available. Either the ends of the interval are considered as 
physical boundaries or periodic conditions are imposed with the period that of the 
computing interval. In the former case we know from experimental experience, 
as we remarked above, that intervals of less than 5 wavelengths are not suitable 
if end effects are to be avoided. With our present computers, too many grid 
points are needed for extended intervals and the reported work has generally 
been confined to one or two wavelength strips. In  the case of periodic boundary 
conditions it is necessary that the wave-number of the wave-form be an integral 
multiple of the computing interval’s wave-number. If this condition is not satis- 
fied, it is found that the calculated wave-form is not periodic and accordingly is 
unphysical. 

There is one paper in which this problem is attacked: Meyer (1966). Meyer con- 
siders rotating Couette flow with y = 0.83 and assumes periodic boundary con- 
ditions in the axial direction. He varies the length of the computing interval 
until the wave-form becomes periodic. With this method he is able to select a 
wavelength. He finds that this wavelength is not the one which maximizes 
the torque (or equivalently the heat transport). It is also not the wavelength 
which maximizes the growth rate. The results exhibit a lack of uniqueness 
which depends upon the initial perturbation. 
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An undesirable feature of Mcyer’s work is his choice of y. It is known from 
Coles’ (1965) work that for y M 0-85 the modes m > 0 occur about 25 yo above 
critical Bin. Therefore the calculations in question, which are limited by the 
restriction of two-dimensionality to modes m = 0, are applicable only over a 
short range. The computations were carried to about 4Rin. Snyder & Lambert 
(1966) have shown that the nz > 0 modes do not occur until about lOR,, when y 
is as large as &. Thus, for two-dimensional treatments, y = 4 is a more reasonable 
value with which to work. 

4. Statement of the problem 
The theories described in $ 2  and the experimental facts enumerated in $ 3  are 

sufficient to allow one to draw the conclusions which we hope to establish: 
(a)  there is a band of allowed wave-numbers at  values of R,, above critical and 
the width of the band increases with Rin, where the width of this band is smaller 
than that given by linear theory; ( b )  the selection of a wave-number from the band 
is determined by the initial conditions; (c)  end effects are relatively unimportant 
in this process; (d )  extremum principles are not necessary for wave-number 
selection and probably are at variance with the observed results. The theoretical 
work of Schliiter et al. (1965) and Ekhaus (1965) proves (a ) ,  while Segel’s (1962) 
preliminary work suggests that ( b )  is reasonable. Both Meyer (1966) and the 
present work contribute to show (d )  to be true. The experiments of Coles on 
(a )  and (b)  and of Snyder ( 1 9 6 8 ~ )  on (c)  furnish conclusive proof of these points. 

Be that as it may, many people working on fluid dynamics do not appear to be 
convinced of the point of view summarized iii (a)-@). In evaluating his data, 
Coles (1965) does not draw the conclusion ( b )  but develops a statistical explana- 
tion. There is need for a deliberate set of experiments to examine these points 
explicitly and in detail, and then to make the logical synthesis. This is one pur- 
pose of this paper. The other is to provide some highly accurate measurements of 
a which can be checked analytica,lly and numerically. 

In  the next section the precautions necessary to get accurate wavelength 
measurements are described. This is followed by data on item (b).  Section 7 deals 
with item (a) ,  and here the actual measurements of a are presented. The paper 
ends with a discussion of non-uniqueness illustrating its interpretation in terms 
of the governing equations and some implications of the results for statistical 
mechanics. 

5. Apparatus and preliminary experiments 
5.1. Apparatus 

The equipment has been described several times in the past: Snyder & Karlsson 
(1964), Snyder (1968b). Accordingly, it is sufficient to state: R, = 3.140 f. 0.001; 
y = +; the maximum axial working space of the annulus is 95 cm; the apparatus 
is held isothermal to 5 mdegC; the fluid is an aqueous solution of glycerol; flow 
visualization is by the aluminium flake method using a concentration of about 
5 x lop2 g/L; thermistor anemometers (Lambert, Snyder & Karlsaon 1965) 
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measure the shear at  the inner cylinder. Figure 2 is a schematic of the optical 
system which has been added for these experiments. Parallel light from the left 
passes through a slit and illuminates an axial plane of about 2 mm thickness. The 
lighted plane is viewed at right angles by an observer with a cathetometer. An 

FIGURE 2. A schematic of the optical equipment : a, light source and parabolic reflector; 
b, light shield; c, Lucite outer cylinder; d, photocell; e light source for photocell; .f, lead 
screw; g, worm drive. 

alternative method is slzo.lr-m in the figure. It consists of a photocell at  one focus of 
a telescope which has as its conjugate plane the lighted surface. The photocell is 
attached to a lead screw borrowed from a lathe and can be scanned up or down 
at constant speed. A light source for the photocell moves along with the scanning 
head and is always focused at  the same point as the photocell telescope. The 
alignment of the aluminium flakes produces sharp peaks in the output of the 
photocell as  the line of sight passes cell boundaries. 

The choice of 7 = + is dictated by the desire to have available a large area of 
parameter space in which the spatial variation of the field is two-dimensional, 
i.e. m = 0. This facilitates both numerical calculations and analytic computa- 
tions of t  he expected results. Analytic methods such as those of Stuart can be 
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applied to the case m = 0 (cf. Davey, DiPrima & Stuart 1968), but the com- 
plexity of the equations which ensue is not conducive to rapid progress. Our 
prime objective in this research is to complement the theoretical work on non- 
linear mechanisms and it is highly important that our results be in a form that 
can be compared with predictions. Hence the restriction to the area m = 0.  

5.2.  Experimental problems 
Previous data on wave-number measurements in the finite-amplitude region 
show a rather large scatter: Snyder & Lambert (1966), Donnelly & Schwartz 
(1965). This is due in part to non-uniqueness, but the onset wavelength, which 
is unique, still shows a large spread (cf. Taylor 1923 and more recent data by 
Donnelly & Fultz 1960). It seems reasonable, considering the instruments 
involved, that, if the wavelength data are repeatable, the errors should not be 
more than 1 yo. A search for the source of the trouble led us to ask three questions: 
( a )  how long must one wait after the values of R,, and Rout become constant until 
the wave-form has reached a steady state; (b)  do all the cells have the same wave- 
length or is there a gradual trend near the ends; ( c )  how great is the scatter from 
run to run ‘1 

All these questions can be answered by using the photocell device described 
above with the following procedure: the case p = 0 is used for all the data in this 
section. The inner cylinder is suddenly started rotating and the photocell is 
scanned up and down the length of the column repeatedly. The time scale of the 
readjustments being measured is small compared with the time for one traverse 
of the scanning head. There are fiducial marks in the line of sight of the photocell 
which obstruct the view and are recorded as sharp pulses in the photocell output. 
The fiducial pulses calibrate the recorder chart in terms of distance along the 
cylinder and allow one to measure both the wavelengths and the motion of a 
particular cell wall with respect to the end of the apparatus. Wavelengths and 
relative motions are measured directly from the chart recorder. 

Another method is to sight the cathetometer on a chosen cell wall and to re- 
cord its motion as a function of time. When the steady state isreached, the wave- 
length of the cell can also be measured with the cathetometer. In general, both 
methods are used for all readings and the data are compared as a cross-check 
on accuracy. 

In figure 3 we show the results of two different runs with the length of the fluid 
column somewhat lower for the lower curve on the graph. A wavelength consists 
of two cells and there is a total of 22 cells in the column for these runs. The data 
points marked x are taken from scans made 1 min or about 25 revolutions after 
the start of rotation, while the points marked 0 are measured 20 min after time 
zero. Two facts are evident: (a )  the cells do not all have the same wavelength 
when they are formed, but become more so as time progresses; ( b )  the adjustment 
process takes a long time. 
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5.3. Measurements of adjustment time and uniformity 
A large number of runs such as those of figure 3 were made under varying con- 
ditions. Several end conditions were tried: solid end plates attached to the inner 
cylinder; then attached to the outer cylinder; a free surface at  the top; and a semi- 
free surface a t  the bottom consisting of immiscible layers. The end boundary 
conditions seem to affect only the boundary cell at each end in as far as wave- 
length measurements are concerned (however, see Snyder 1 9 6 8 ~ ) .  This result 
holds for all the data to be described below. 

I I I I 
0 5 10 15 20 25 5.5 

Cell number 

FIGURE 3. Wavelength as a function of axial distance along the cylinder. x , initial values; 
0, steady-state values. 

Another variable to consider is the mean wavelength to gap ratio hid. This 
parameter can be changed by using different lengths L of working fluid: Hagerty 
(1946), Snyder (196Sa). The number of cells must be on integer. This, combined 
with non-uniqueness, allows hld to be varied by 20 yo or more. The uniformity of 
A ,  the adjustment time and the reproducibility of the data are not dependent 
perceptibly on hid. 

The scatter in the initial non-uniformity of the cells, the x points of figure 3, 
seems to be random from run to run and under varying end and length conditions. 

Measurements were made to determine how the adjustment time 7 varied 
with v, L and Rin. We find r = Cv/L2,  where C is a constant, fits the data 
quite well. The initial and final values of Rin do not influence the adjustment 
process. This is illustrated in figure 4. Here 11 and L are fixed for all the runs 
and the two numbers on each curve are the initial and final values of Ri,. For 
this apparatus onset occurs at Ri, = 69. In the next figure 5 the data of figure 4 
are replotted in normalized form and a curve clA/dt = C,(A - A3) has been fitted 
through the point marked with an arrow. No physical significance is attached to 
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FIGURE 4. Adjustment of a cell boundary as a function of the dimensionless diffusion time. 
The numbers on each curve are the initial and h a 1  value of R,n. The abscissa is the 
change in the width of a cell. 
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FXGURE 5.  The data of figure 4 in normalized fonn. 
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this form of the equation. In figure 6 we illustrate that curves of the same general 
shape apply over a wide range of v and La.  The extreme ratios of v and L2 are 
4.5 and 7 respectively. Figure 6 is derived from four graphs of the form of figure 5. 

We have tried to indicate in figure 6 that one must wait about 0. 15L2/v seconds 
after starting the apparatus before a steady state is reached. No explanation of 
the curves or their slight deviation from one another is made other than that L 2 / v  
is the diffusion time based on the length of the apparatus. It is obvious that the 

0 5 10 15 

loot x v/L= 
FIGURE 6. The normalized adjustment as a function of the dimensionless diffusion time 

for two different kinematic viscosities and lengths of the fluid column. 

diffusion time across the gap d2/v  is much less than the spin-up time (L2/vs2,)~ 
(Greenspan & Howard 1963), which in turn is, for the Ri, considered here, con- 
siderably less than L2/v. The process of adjustment is definitely diffusion and 
involves all the cells throughout the length of the column. 

When the L and v of various apparatus described in the literature for measur- 
ing h are inserted into 0.15L2/v, we note that the steady state is not reached for 
periods of from hours to days. It is necessary to use a high-viscosity fluid to make 
precise measurements in a reasonable time. This point was not appreciated in the 
past and a survey shows that all past measurements of h are open to this criticism. 
We can expect, on this account, to find a spread in the older data about as much 
as the x data of figure 3.  Any change in the conditions of the apparatus such as 
the continuous flow used by Snyder & Lambert (1966) to  move the cells past the 
sensor, or the motion of the sensor itself as in Donnelly & Schwartz (1965),  will 
prevent the attainment of steady state and lead to scatter. In the present research 
we used v z 2 C.G.S .  units and L z 80 cm so that the waiting time is about 10 min. 

Returning to the question of the uniformity and reproducibility of cell widths, 
the data show that, if one waits the requisite time, the cells, with the exception 
of the two boundary cells, are uniform in h to better than 1 yo. The values of 
h with L and Ri, fixed vary by less than 1 yo from day to day. 
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6. Experiments on uniqueness 
6.1. Attaining a desired wave-number 

The wavelength which is observed when Rout is fixed and Ri, is slowly increased 
through critical is close to the value predicted by the linearized theory. The 
discrepancy is due to the quantization of the cells. There are two boundary- 
layer cells-one at each end-and the intervening column is divided up into an 
integral number of cells ( N  - 2) .  The spacing is uniform and N is chosen to make 
;I as close as possible to the calculated value. 

In  another study we investigated the end cells and found that their character 
depends on whether the boundary is non-slip (solid) or a free surface. (The latter 
includes the semi-free interface between immiscible liquids.) At  a non-slip bound- 
ary the height of the cell is a function of Bin  but almost independent of L or 
hld. The free surface cell has nearly opposite behaviour; it can adjust its length 
from about i d  to 2d in order to accommodate the Taylor cells. For both boundary 
conditions the cell height is a strong function of p. The non-slip cell is driven by 
the Ekman layer and has the direction of circulation appropriate to close the 
layer. The free surface cell can have either direction of circulation when the 
curvature of the surface is small (small Froude number). At high rates of rotation 
the free surface is driven by the surface curvature and the circulation is determin- 
ate. When top and bottom end conditions are non-slip and symmetrical, there 
can be only an even number of Taylor vortices since the cells must mesh their 
swirls. If one surface is free, either an even or odd number of vortices are found; 
but at  higher speeds there is no choice. Knowing L, the height of the non-slip cell 
VS. Ri, and the calculated value of A, it is possible to predict the observed h for 
a slow traverse of the stability boundary. 

With reference to figure 1, we expect the linearized wavelength to appear 
when the stability curve is crossed very slowly. This follows, since at  onset the 
linearized value is the only unstable wavelength; its amplitude at  time zero is 
always larger than that of any others. The first wavelength to appear is stable for 
a large range of Rin, probably because of the quantization condition and the 
inherent stability indicated by Schluter et al. (1965). By crossing the stability 
boundary slowly at  a point with ,I.L + 0 and then traversing paths in parameter 
space as shown in figure 7, it is possible to go to a point such as (Rout = 0, Ri,) 
with different wavelengths. The numbers in the figure refer to the N occurring in 
our apparatus for one value of L. The step-by-step process is illustrated for the 
case of N = 26. Start with Rin and Rout such that the system is at point (a)  just 
below the instability curve. Increase the speed of the inner cylinder to the 
point ( b ) .  Reduce the speed of the outer cylinder until Rout = 0 and the system is 
at  point ( c ) .  To get N = 22 start at  point (d). This type of behaviour has been ex- 
hibited for varying lengths L and varying final points 0 (refer to figure 7) .  The 
non-uniqueness arises from the large range over which each wave-number is 
stable. It may be difficult to compare theoretical results based on a continuous 
variation in h with experiment owing to the quantization condition. 
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6.2. Test of the initial value hypothesis 
The crucial test of the initial value hypothesis is the following experiment. Bring 
the system to the point 0 in figure 7 with 26 cells. Reduce Ri, to  a point below 
critical such as that marked with a triangle. Then bring Ri, back to 0 impulsively. 
This manceuvre can be carried out with two motors and a mechanical differential. 
One motor rotates the system at speed RI, = A; the second motor drives the 
differential and adds the difference to give 0. 

FIGURE 7. Paths in parameter space used to attain a desired wavelength. 
on the pathe are the number of cells in the fluid column. 

The numbers 

The results of the experiment depend upon how long the system remains at  A. 
If the 26 cell disturbance has died out before the speed is increased to 0, then 
the final waveform has 23 cells, the linearized value. However, if there is still 
a measurable amplitude of the 26 cell wave-form when the speed is changed 
A -+ 0, then the final cell number is 26. The amplitude of the cellular motion is 
measured with a thermistor anemometer. Experiments such as this have been 
carried out starting with 22, 24 and 26 cells with one value of L. Of course the 
cell number in question must be stable at 0 in order to carry out this process. 
Similar sequences have been investigated at  other values of L and other final 
values of Ri,. The results are always the same: the mode having the highest 
amplitude initially prevails. The data are quite reproducible from run to run and 
day to day. 

It is also observed that one can change the values of Rfn and Rout rather 
abruptly and throughout large areas of figure 7 and still retain the same value 
of N .  Coles (1965) has given ample data to illustrate this point. The difference 
between the present data (for which 7 = 0.5) and Coles’s results (for which 
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7 = 0.88) is that he reported non-uniqueness only when the flow is doubly 
periodic while all the results reported in this paper are for m = 0, the singly 
periodic case. 

7. Wavelength measurements 
7.1.  The band of allowed wave-numbers 

The experimental methods of $5.1 were used to measure wavelengths as a func- 
tion of Ri, with p = 0. For the first set of data the upper surface is free; the lower 
surface is non-slip and is attached to the inner cylinder. The length of the appara- 
tus is chosen to accommodate 22 Taylor cells having the linearized wavelength, 
plus an Ekman-layer cell whose height is appropriate to the critical value of 
Ri,. This turns out to require L = 23.2 gap widths. As Rin increases, the Ekman 
cell grows in height and the space available for the Taylor cells decreases. Some 
of the decrease in the observed wavelengths is due to the growth of the non-slip 
cell, and the remainder is absorbed by a stretching of the free surface cell. The 
measurements are graphed in figure 8. 

To get a state such as N = 26 in figure 8, the procedure illustrated in figure 7 
and explained in $ 6  is carried out. Figure 8 shows where the point 0 must be in 
figure 7 to attain a desired N .  For example, by starting the apparatus properly 
and ending the sequence at  Rin = 100, the states N = 22 to 27 can be set up; 
at R,, = 150 the range of N is 23 to 27; while, at  Ri, = 200, N can be 24,25 or 26. 
Once the system is on one of the lines of constant N it  remains there even if the 
value of Ri, is changed violently, unless the change in Ri, is such as to put the 
system beyond the range of the constant N line as shown in figure 8. The arrows 
indicate the transitions between states when Ri, is increased or decreased beyond 
the value for which a particular value of N is stable. Transitions near Ri, = 200 
for N = 27 + 26 and N = 25 -+ 24 and 26 are probably due to the requirement 
t,hat the number of cells be even at high values of Ri, to meet the end conditions. 

Six items of interest for wave-number selection may be noted upon studying 
figure 8. (a )  The onset wavelength is unique. If Rin is decreased slowly to its 
critical value, the number of cells always changes over to 23 (as the arrows 
indicate in the figure) regardless of the initial value. (b) The width of the accessible 
band of a increases rapidly near critical and has a maximum at about 1.5 critical. 
( c )  The extent of the band is unsymmetrical about the linearized value; the band 
width increases primarily on the side of increasing a. ( d )  There is a decrease in the 
range of accessible values of a for large values of Ri,. This is dictated in part by 
the end conditions, which require an even number of cells at  high rates of rotation. 
However, one might expect to find a state of 28 cells and this mode was sought in 
vain. Perhaps N = 28 is outside the ‘narrower) band throughout the range Rin, 
but the theory indicates that the band widens as Ri, increases. Modes with both 
24 and 26 cells change to modes with m > 0 beyond the region where the data 
are plotted. It is believed that these transitions are due to end effects. ( e )  The 
transitions indicated by the arrows in the direction of increasing Ri, cannot be 
explained by either Segel’s (1962) results or the work of Schluter et al. (1965). 
(f) The dependence of a us. Rin is linear within the limit,s of error of the data. All 
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the slopes of dA/dRi,  in figure 8 are about equal except the one at shortest A. 
Corrections to be applied later will not change this last result. 

7 . 2 .  End effects and length effects 
The results of another experiment are illustrated by figure 9. The inner cylinder 
is rotated at Rin = 300 with ,u = 0. The fluid level is set at 76 cm and the number 
of cells is 24. The end conditions are the same as the previous example. The level 
is dropped by 1 cm, the apparatus is rotated for 1 h, and both the number of cells 

238 gaps 

23 e f 1 2 3 . 2  gaps 

23.8 gaps 

232  gaps 
129 gaps 
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-2 

m 
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'F 

G-2 - 1; 
4 

100 200 700 400 500 

R,, 
FIGURE 10. Wavelength us. Ri, plots with a non-slip boundary attached to the inner 

cylinder and a free surface boundary at  several different heights of the fluid column. 

and the wavelength are measured. This process is repeated. It is seen that the 
wave-number is again unsymmetrical about the linearized value, here indicated 
at  the bottom of the graph. Figure 9 gives us a measure of the width of the allowed 
band at  Rin = 300. The periodicity of the transitions and the equality of the 
slopes shown by the data indicate that end effects are not too important in these 
measurements. 

It is reasonable to ask how a diagram such as figure 8 is modified by a small 
change in L and by a large change in L. Using the same conditions as for figure 8 
except that L is now 23.2 gaps, the curves for 23 and 24 cells were remeasured. The 
plots may be seen in figure 10. The data at 23.2 gaps are also drawnin for compari- 
son. The level was again changed and two more sets of data were taken as indi- 
cated. The useful conclusions one can draw by comparing figures 8,9 and 10 are as 
follows: (a )  The slopes and ranges of the wavelength curves are not modified by 
small changes in L. (b )  When the wavelength gets to be more than about 10 yo 
below the linearized value, the slope of dh/dRi ,  decreases rapidly; otherwise 
the slope is nearly independent of N .  A discussion of the 'short wavelength' 
modes can be found elsewhere (Snyder 1 9 6 8 ~ ) .  ( c )  For the data lines with constant 
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slope (i.e. excluding ‘short modes’), if a correction is applied for the decrease in 
the column due to expansion of the Ekman cell, all slopes are equal. 

This last point requires more explanation. Look at  the lines in figure 10 with 
L = 13.8, N = 14 and L = 23.2, N = 24. They have different slopes. Since the 
increase in the height of the boundary cell is independent of L it affects the 
N = 14 slope more than the N = 24 line. If we consider the part of the column 
above the end cell and correct the wavelength for the gradual decrease of this 
column by using figure 9, then the corrected slopes have the same value. 

To illustrate this point in a different way, we have repeated the experiment of 
figure 8 with the base of the annulus attached to the outer cylinder. The boundary 
conditions now require an odd number of cells at high rates of rotation. Thus 
we chose L = 23.2 gaps and N = 23. In  figure 11 the two curves are compared. 
Our previous measurements indicate that the height of the Ekman cell for the 
base ‘attached outer ’ is almost independent of Ri,. Thus, no correction is needed 
to the upper curve of figure 11. Now we may correct the data of base ‘ attached 
inner’ (of figure 11) or equivalently of figure 8 as suggested and the result is 
shown in figure 12. 

In figure 12, which is to a larger scale than the previous figures, C is the 
measured slope and B the slope for ‘attached inner ’ after correction. Comparing 
A and B we find that within the limit of error they are equal. We hope we have 
convinced the reader that length and end effects can be circumvented and that 
the slope given by A or B is a property of Taylor vortices. The derived slope, as 
we mentioned, is nearly independent of N and has a value 

k 5 yo, d(h /d ) /dR i ,  = - 9-96 x 

an exceedingly small rate of change. 

7.3. Error analysis 
The wavelengths are about 6 cm and we generally measured 1, 2 and 4 wave- 
lengths from one common cell boundary. The data were always checked for 
internal consistency; the ratio of wavelengths in the set had to be in the ratio of 
1 : 2: 4 within 2 yo or the data point was rejected. Again, the data derived from 
cathetometer observations were required to agree with the photocell data to 
within 2 yo or the measurement was rejected. The cells were viewed at  90” inci- 
dence so that refractive effects should be small. Since the cathetometer can be 
focused and read to about & 0.02 cm, we suspect that our accuracy is better than 
1 yo. Fluctuations in the speed of rotation are held to about 0.2 yo. The thermal 
regulation is good to about k 5 mdegc. The spread of the data points decreases as 
Ri, increases. Thus we feel that the scatter near critical is due to  statistical 
fluctuations augmented by the difficulty of focusing on the cell boundary, which 
becomes more diffuse as critical is approached. The precision of all the wavelength 
measurements is estimated at k 1 yo. 

It may be questioned whether the various modes with different N in figure 8 
are really stable with respect to each other within the ranges indicated on the 
graph. Tests have led invariably to an affirmative answer. The mode with 
N = 27 was set up at Ri, = 180 (an extreme case) and the apparatus was run 
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for 24 hours. No change of modes occurred. Experiments of this sort were carried 
out for periods of 16 hours at  N = 22, Rin = 100 and N = 26, Rin = 300. As we 
mentioned in tj 6.2, it  is possible to stop the rotation of the cylinder momentarily 
without experiencing a transition to a new mode. This procedure imposes a rather 
strong perturbation on the system. If the observed modes are unstable, they 
have an extremely long relaxation time and a large potential barrier separating 
them. 

8. Discussion and conclusions 
8.1. Wave-number selection 

These experiments show that the non-uniqueness described by Coles (1965) also 
occurs in singly periodic flows. Evidence has been presented to show that both 
Coles’ results and the present data are not strongly influenced by end and length 
effects. At least, these effects can be removed by corrections. It is also shown that, 
for a given mode ( N ,  m = 0) ,  the dependence of the observed wavelength on 
Rinislinear and theslope is exceedingly small. The slopeis the same for all ( N ,  0 )  for 
which the h does not deviate too far from the linearized value. The wave-number 
always increases with Rin. No predictions of the wave-number a t  finite amplitude 
for rotating Couette flow are available for comparison. 

The predictions of Schliiter et al. (1965) for the BBnard problem, of Ekhaus 
(1965) for the Poiseuille problem, of DiPrima (private communication) and 
Roberts (private communication) for the Couette problem, that there is a band of 
allowed wavelengths which is narrower than the band that can grow according 
to linear theory has been shown experimentally to be true for Couette flow. The 
calculations of Schliiter et al. indicate an asymmetry in the band width about the 
onset wave-number, with the increase occurring on the side of increasing a. We 
have observed this behaviour but hesitate to  make a comparison because it is not 
known if the analogy between BBnard convection and the Taylor problem holds 
on this point. 

Segel’s (1962) suggestion that the past history of the system determines the 
selection of a wavelength from the allowed band has been shown to hold up to 
about twice the critical Rin in our apparatus. At larger values of Ri, there are 
transitions which cannot be explained by Segel’s results. It is believed that an 
analysis such as that of Davey et al. (1968) can be applied to these transitions. 

The present work may be criticized on the grounds that, for a change N + N + 1 
or N + 2, the wavelength must change by 4 to  8 yo. If the apparatus were longer 
and the gap smaller, the ideal case of a continuous range of accessible wave- 
numbers would be approached. We have discussed above the reason for the 
choice 7;1 = +. In maintaining this ratio, the principal limitation on the length 
to gap ratio is one of engineering and the second limitation is the cost. A solid 
rod of steel 1 rn long will bend near its mid-point sufficiently to cause a variation 
of the gap by 1 yo or more unless it has a diameter of 2.5 cm. At least this has been 
our experience. As the rod gets longer the diameter must be increased almost in 
proportion to prevent bending. There is no point in using longer cylinders. Glass 
and fixed dimensional plastics of precision bore with a length in excess of 1 m are 
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not available and must be custom made. We could increase the length to gap 
ratio by a factor of about 3 by making R, w 1.2 cm, but we really need an order-of- 
magnitude increment to achieve a significant improvement. A rather sophisti- 
cated apparatus made of special materials with custom-made parts and costing 
an enormous amount appears to be the only way to push this type of investiga- 
tion much farther. 

8.2. Adjustment time 
In  $ 5  it  was shown that after a change in the conditions of the apparatus the 
steady state is not re-established until about & the diffusion time has elapsed. 
This period is much longer than the spin-up time. When considering geophysical 
processes in nature it is important to realize that some processes, such as the 
modification of secondary flow, take place on the diffusive time scale while 
mean motions are controlled by the spin-up time scale. 

8.3. Deterministic vs. statistical interpretation 
Our point of view toward the interpretation of the data is deterministic, not 
statistical. If the history of the boundary conditions is known, the final state can 
be predicted without qualification. An accessible state at  Ri, can be reached by 
starting the apparatus in a particular way and every time the apparatus is 
started in this way the same state will be reached. The history of the mean flow 
and that of the disturbance can be recorded with thermistor anemometers and 
our statement on determinancy is based upon such records. The observed in- 
determinancy only arises when the past history of the apparatus is not known. A 
statistical interpretation of the results is inappropriate because the past history 
has a lasting effect on the outcome. Statistical methods assume the influence of 
the initial value of the variables on the present value of the ensemble which is a 
transient and dies out as t -+ w. Also, for the problem in hand there is no need to 
surrender to  the less precise standards of statisticaI averages when complete 
solutions to the governing equations are easily realized. However, statistical 
methods are very useful in certain situations and the experimental work de- 
veloped here may have some utility in studying the statistical mechanics of non- 
linear processes. 

When we encounter an indeterminancy in non-linear systems, such as in the 
present problem, it is due to our neglect of the time variable. If the governing 
equations are simplified by dropping all time derivatives, the character of the 
equations is changed and it is not surprising that the character of the solution is 
changed. 

Many non-linear systems, including the present case, have a manifold of 
solutions all satisfying the same boundary conditions. The bifurcation at  onset 
for the Taylor problem is well known (Velte 1965). In  the non-linear region the 
number of solutions increases as Rin gets larger. This is the important result of the 
theoretical work of SchIuter et al. (1965) (for the BBnard problem) and the ex- 
perimental work of Coles (1965). The time variable tells us which solution is 
selected in a given observation. 

In  a recent inspiring lecture Professor Prigogine has commented on the 
existence of multiple, separate solutions in non-linear systems. The approach to 
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continuum problems which he outlined influenced the course of these experi- 
ments considerably. We believe the results of figure 8 show the multiple solutions 
due to non-linearity, as discussed by Prigogine, in the simplest case yet studied. 
These data also furnish an example of a many-body system in which the initial 
state has a lasting effect on the motion. If the motion described by figure 8 is 
sufficiently close to equilibrium so that the Prigogine-Resibois master equation 
holds (Prigogine 1962), then the persistent influence of the initial conditions 
prevents a Boltzman H-theorem from holding. It would be desirable to investi- 
gate two-dimensional rotating Couette flow by the methods of non-equilibrium 
statistical mechanics to find out how far these methods apply and what conse- 
quences the non-uniqueness has for statistical mechanics. 

The remaining topic is a comparison of our results with the various extremum 
principles. The first point to be made is that the variational approach is not 
necessary. Ekhaus’s method with a mixing of both wave-numbers and modes 
should predict the system’s behaviour whenever Ri, is close to and above the 
critical value. Since the theoretical work of Schluter et al. and the experimental 
work presented here shows that a band of wave-numbers is equally stable, it is 
difficult to see how any extremum principle can be correct. It is a very strange 
flow, indeed, which has any extremum property over a range of flow patterns. For 
the problem in hand we have measured the torque and circulation in Taylor cells 
as their wavelength is changed while Ri, is held fixed (Snyder 1 9 6 8 ~ ) .  There is a 
measurable dependence of both quantities on a. A variational technique would 
pick one wavelength out of the observed range regardless of the initial conditions, 
and this result contradicts these experiments. We conclude that an extremum 
principle which is independent of time is not appropriate for wave-number 
selection in non-linear problems. 
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